
Design and Implementation of a Modular
Kalman Filter

Benjamin Rubinstein
bzr4@case.edu

William MacCormack
wjm102@case.edu

Abstract

We present an implementation of a modular Kalman filter, utiliz-
ing both linear and unscented Kalman filtering elements, optimized
for robust localization in aerospace and robotics applications. The ar-
chitecture utilizes modular predictor and corrector components, with
flexibility for system-specific evolution and observation functions, en-
suring adaptability. Two synthetic modalities were tested and residual
values were found to be within acceptable ranges. Proposed enhance-
ments include transitioning from Python to a compiled language for
use on embedded systems and automatic noise covariance estimation
to reduce the need for accurate a priori sensor characterization.

1

1 Introduction and Background
State estimation is critical to many control and analysis algorithms for ap-
plications in robotics, aerospace, and mechanical systems. Bayesian filters
attempt to solve the problem of state estimation by propagating a probabilis-
tic estimate of system state through an evolution model and correcting this
estimate with a probabilistic model of sensor data through the application
of Bayes theorem. The common approach of modeling the state and sen-
sor estimates as gaussian distributions has led to a proliferation of Kalman
filters[3]. These filters, which include the (linear) Kalman Filter, Extended
Kalman Filter, and Unscented Kalman Filter, exploit the property a Gaus-
sian distribution is fully defined by a mean and covariance.

The Linear Kalman Filter uses the linear nature of its system models to
provide closed form update and correction equations for the mean and co-
variance of the evolution and observation model. The extended Kalman filter
avoids the linear system requirement by employing the Jacobian of the sys-
tem to linearize the evolution and observation models. The unscented filter
opts to forego exact propagation of mean and covariance through approxi-
mate system models, and, instead, exactly propagates a weighted ensemble of
‘sigma points’ through evolution and observational models, which are used to
estimate the true mean and covariance. Details for the implemented system
can be found in section 2.

2

Bayes Filter:
Evolution Observation–Innovation Noise

Monte Carlo Filter:
Discretize PDF

Gaussian Filter:
Simplified PDF

Histogram/Grid Filter:
Discretized Domain

Particle Filter:
Any Any–Any Any

Ensemble Kalman:
Gaussian

Gaussian-Any Linear*

(Linear) Kalman Filter:
Gaussian

Gaussian–Linear Linear

Extended Kalman Filter:
Gaussian

Gaussian–Any* Any*

Unscented Kalman Filter:
Gaussian*

Gaussian*--Any Any

Figure 1: Taxonomy of the different types of Bayes Filters

2 Mathematical Modeling and Equations
All Bayesian filters require an observation model,

Bt = g(Xt) + Ut

where bt represents the data received at time t and xt is the state estimate
at time t. g is the function that describes the expected sensor value given a
system state. If that function is linear, we represent it as a matrix A.

Bayesian filters also require an evolution model,

Xt+1 = f(Xt) + Vt

where f is the function that takes an observation at time t and predicts
what the system will be at time t+1. If that function is linear, we represent
it as a matrix F .

3

The errors Ut ∼ N (µ, Σ), Vt ∼ N (µ, Γ) are the measurement (observa-
tion) and process (evolution) noise estimates.

Since the Kalman filter assumes that the error and process distributions
are both gaussians, the entire probability can be defined by its mean x̄ and
covariance D. This gaussian is propagated forward in time through the
evolution model to generate a gaussian a priori estimate of the system state
and is corrected by gaussian observations into a gaussian a posteriori state
estimate. Thus, the state estimate is evolved with time and corrected as new
observational data is available.

2.1 Linear Kalman Filter Update

2.1.1 Linear Prediction

When Kalman filtering a system with a linear evolution model, the mean
and covariance can be propagated exactly.

ˆ̄x = Fx̄, D̂ = FDF T + Γ

2.1.2 Linear Correction

The Linear Corrector adjusts the mean estimate to more closely match the
observed data, proportional to the relative covariance of the prior and sensor
models with the Kalman gain matrix, K.

∆ = b− Ax, K = DAT (ADAT + Σ)−1

While the mean estimate correction is dependent upon the measurement,
the covariance estimate correction is independent of the accuracy of the mean
estimate.

x̄′ = x̄+K∆, D′ = (I −KA)D

2.2 Extended Kalman Filter Update

2.2.1 Extended Prediction

Extended Kalman Prediction only extends linear Kalman Prediction by prop-
agating the mean through the non-linear evolution function, and replacing
the state-independent linear update transform with the state-dependent Ja-
cobian of the non-linear function.

ˆ̄x = f(x̄), D̂ = FDF T + Γ

4

2.2.2 Extended Correction

The Extended Corrector, likewise, replaces the mean observation estimate
with the non-linear observational function, and the linear observational ma-
trix is replaced with the Jacobian of the non-linear observation function.

∆ = b− g(x), K = DAT (ADAT + Σ)−1

x̄′ = x̄+K∆, D′ = (I −KA)D

2.3 Unscented Kalman Filter Update

2.3.1 Unscented Transform

The Unscented Kalman filter [6] uses the Unscented Transform, a weighted
ensemble of "sigma points" to efficiently represent a probability distribution:

The distribution of the sigma points in the Scaled Set form are controlled
by the parameters [1],

α ∈ R+

β ∈ R

κ ∈ R+

x(0) = x̄

and the ith and jth sigma points are sums of the mean and weightings of
columns i or j − n of the covariance:

x(i) = x̄+ (α
√
κD)i ∀i = 1, . . . , n

x(j) = x̄− (α
√
κD)j−n ∀j = n+ 1, . . . , 2n

The sigma point at the mean estimate is weighted differently in mean and
covariance estimates, while the remaining sigma points all have the same
weight for both mean and covariance.

w(0)
m =

α2κ− n

α2κ
, w(0)

c = w(0)
m − α2 + β

w(i)
m = w(i)

c =
1

2α2κ
∀i = 1, . . . , 2n

5

2.3.2 Unscented Prediction

Unscented prediction only requires the evaluation of the evolution function
f , applying it to each sigma point and taking a weighted sum of the output
to computed the mean and covariance:

x̂(i) = f(x(i)), ˆ̄x =
2n∑
i=0

w(i)
m x̂(i),

D̂ =
2n∑
i=0

w(i)
c (x(i) − ˆ̄x)(x(i) − ˆ̄x)T + Γ

2.3.3 Unscented Correction

The correction step first predicts the measurement from the state estimate
using g and the sigma point ensemble:

z(i) = g(x(i)), z̄ =
2n∑
i=0

w(i)
m z(i)

From the ensemble, two covariance matrices are found. First is the pre-
dicted covariance:

S =
2n∑
i=0

w(i)
c (z(i) − z̄)(z(i) − z̄)T + Σ

Second, is the cross covariance:

T =
2n∑
i=0

w(i)
c (x(i) − x̄)(z(i) − z̄)T

Then, the residual and Kalman gain are comupted:

∆ = b− z̄, K = TS−1

While the mean update is identical to the linear Kalman update, the
covariance estimate update takes on a new form:

x̄
′
= x̄+K∆, D

′
= D −KSKT

6

3 Implementation
Our implementation of a modular Kalman filter [4] consists of two classes,
a prediction provider and a correction provider, to evolve the state vector
through time and apply a correction to the estimate based on received data,
respectively. Abstract classes were created for the predictor and corrector,
which provide the interface methods for prediction and correction.

For this project, two distinct filter implementations were created: the
linear Kalman filter and the Unscented Kalman filter (N.B. an Extended
Kalman filter can be implemented with this library by providing the non-
linear function and the Jacobian to the linear filter implementation). Each
filter’s predictor and corrector implements methods to update mean and
covariance. Because of this polymorphism, the user can call the same ’predict’
or ’correct’ function regardless of which Kalman update methodology the
provider utilizes. This design choice enables interoperability of linear and
Unscented filter providers across the prediction and correction steps. This
interoperability allows for the use of computationally more efficient correctors
for sensors that behave linearly, while Extended and Unscented correctors
are available for non-linear sensors. A single predictor is used to evolve the
system at each timestep. However, a distinct corrector is used for each atomic
sensor interaction. This is critical to the success of the system, as it enables
the filter to function optimally with whatever sensors provide new readings
at each timestep. These, temporally sparse sensor updates can occur due to
differing update rates across the array of different senors employed by the
filter or through disconnection and malfunction of specific sensors.

By separating the prediction and correction steps, the filter can provide a
state estimate more frequently than the fastest updating sensor, albeit with
larger covariance than could be provided by a constantly corrected estimate.
This multi-update, observation-split filter allows control and analysis systems
built on top of the filter to be abstracted from the specifics of particular
sensor noise and update rates, while still providing a full qualification of the
estimate through the covariance.

4 Applications
The model was tested on two modalities. First, on a spring-mass oscilla-
tor. The filter tracked one degree of position, velocity and acceleration.

7

Figure 2: Structure of the Kalman Filter

Second, on a modeled rocket flight, where the state included three axes of
position, velocity, acceleration and rotational velocity along with an orien-
tation quaternion. Dropout rates of 10% through 99% were tested on the
spring-mass system, and model predictions were only began to be seriously
affected by dropout at around 80% dropout, see figure 7.

4.1 Spring Mass System

The first system, an undamped spring-mass oscillator, obeys the following
dynamics:

Position (x):
x(t) = A cos(ωt)

Velocity (v):
v(t) = −Aω sin(ωt)

Acceleration (a):
a(t) = −Aω2 cos(ωt)

8

The natural frequency ω is defined by

ω =

√
k

m

where k is the spring constant, m is the mass and A is the amplitude.

4.1.1 Linear State Estimation with Sensor Dropout

The linear Kalman Filter was capable of tracking the state of the oscillator
without prior knowledge of the specific system dynamics. It employed the
following evolution model:

Position (x):

x
′
= x+ v ·∆t+

1

2
a ·∆t2

Velocity (v):
v

′
= v + a ·∆t

Acceleration (a):
a

′
= a

4.1.2 State and Parameter Estimation with the Unscented Kalman
Filter

Additionally, an Unscented Kalman filter was employed to perform simulta-
neous state and parameter estimation on the spring mass oscillator system
with the following evolution model:

Position (x):

x
′
= x+ v ·∆t+

1

2

k

m
·∆t2

Velocity (v):

v
′
= v + a ·∆t | a = −x · k

m

Spring Mass ratio (k
m

):
k

m

′

=
k

m

The model was provided only with position data, and successfully tracked
and identified the spring mass ratio of the system.

9

Figure 3: Oscillator with Linear filter and high dropout

10

Figure 4: Oscillator with Unscented filter with 90% drop out.

4.2 Simplified Rocket Flight

An amateur rocket, similar to the one used by the Case Rocket Team, was
modeled in flight. For the sake of this project, the following was assumed:

1. A constant coefficient of drag

2. a proportional relationship between impulse and mass lost

3. Point mass physics for the rocket.

11

4.2.1 Generating Data, Physics Simulation

First we calculated the forces

Fdrag = −Cd · As · ρ(x⃗) · ∥v⃗∥ ·
v⃗

∥v⃗∥

Amateur rocket motors (the premade solid fuel used in model rockets)
define thrust curves, a function that relates the thrust produced over the
burn time of the motor. This is used to calculate the thrust produced, with
the assumption that the rocket is pointed in the direction that it is headed
due to aerodynamic stability.

F⃗thrust = fthrust(t) ·
v⃗

∥v⃗∥

The total mass is calculated as a sum of the dry rocket mass and the
motor mass. Since the motor burns over the course of flight, the motor
looses fuel mass. We assume the motor looses fuel proportional to the rate
at which thrust is produced, and derive the mass equations for the motor:

mmotor(t) = mmotor(0)

1−

t∫
0

fthrust(s) ds

∞∫
0

fthrust(t) dt

Then we can take the sum of the mass of the motor and the rocket (which

is constant) and find that the force of gravity:

Fgravity = mtot · g⃗

The wind force was based on a perlin noise function scaled to the expected
height. This, combined with the air density (calculated as an exponential
decay relative to height: ρ(z) = 1.225e−z/8500) generates the wind field.

Fwind = ∥v⃗relative∥2 · ρ(z) · As ·
v⃗relative

∥v⃗relative∥

We can then sum forces:

F⃗total = Fdrag + Fthrust + Fgravity + Fwind

12

Once we find the forces acting on our body, we update the state:

a⃗t+∆t =
F⃗total

mtot

v⃗t+∆t = v⃗t + a⃗t ·∆t

x⃗t+∆t = x⃗t + v⃗t ·∆t

The orientation quaternion is updated such that the rocket’s orientation
is in line with the velocity vector, then the change in the orientation q̇ is
computed by dividing the current orientation by the previous, which informs
the new angular velocity.

0
ωx,t+∆t

ωy,t+∆t

ωz,t+∆t

 =
q̇

∆T

4.2.2 Filter State Vector

The state vector of the rocket was constructed as follows:

1. x ∈ R3 := the position of the rocket in world space

2. v ∈ R3 := the velocity of the rocket in world space

3. a ∈ R3 := the acceleration of the rocket in world space

4. q ∈ H := the orientation of the rocket as a quaternion[5]

5. ω ∈ R3 := the angular velocity of the rocket

4.2.3 Filter Evolution Model

This filter employs an Unscented Predictor Provider because the orientation
quaternion portion of the state vector behaves non-linearly.

x⃗
′
= x⃗+ v⃗ ·∆t+

1

2
a⃗ ·∆t2

13

v⃗
′
= v⃗ + a⃗ ·∆t

a⃗
′
= a⃗

q
′
= (1 +

∆t

2
·

0
ωx

ωy

ωz

) · q
ω⃗

′
= ω⃗

4.2.4 Filter Sensor Overview

The rocket modality was equipped with four sensors: a GPS (3-axis position),
a barometer (height), accelerometer (3-axis linear acceleration), gyroscope
(3-axis rotational velocity), and magnetometer (3-axis orientation vector rel-
ative to the earth). For this test case, two polling rates were utilized:

• 2 Hz for the GPS, chosen because the GPS can poll at between 1Hz to
5Hz

• 200 Hz for the rest of the sensors, because the slowest sensor (barome-
ter) polls at 200 Hz in high accuracy mode.

4.2.5 GPS

The GPS uses a linear observation matrix is defined as:

xGPS =
[
I3 O3×13

]
where I3 is the 3× 3 identity matrix and O3×13 is a 3× 13 zero matrix. This
separates the three position observations from the rest.

4.2.6 Barometer

The barometric pressure is modeled using the following equations to model
pressure and temperature:

T (h) = T0 − 0.0065h

14

P (h) = P0

(
1− 0.0065h

T0

) gM
R·0.0065

× 1

103

where T (h) is the temperature at height h, P (h) is the pressure at height
h, g is the acceleration due to gravity, M is the molar mass of Earth’s air,
R is the universal gas constant, T0 is the standard temperature at sea level,
and P0 is the standard pressure at sea level.

4.2.7 Accelerometer

The acceleration corrector is non-linear, and has three different parts. First,
the acceleration on the entire rocket is calculated.

at+1 = at +

00
g

Then, the acceleration is rotated to the reference frame of the rocket.

abody = R(at+1, q)

where R represents the quaternion-based rotation of the vector.
Finally, the sensor acceleration is modeled, adding the apparent acceler-

ation from the spin of the rocket.

asensor = abody − ω × (ω × rimu))

4.2.8 Gyroscope

The gyroscope corrector predicts the angular velocity in the body frame:

ωt+1 = R(ωt, q)

4.2.9 Magnetometer

And the magnetometer predicts the magnetic field vector in the body frame:

m⃗ag = R(

01
0

 , q)

15

Figure 5: Rocket tested with a combination of filters, Position, Velocity and
Acceleration

16

Figure 6: Rocket tested with a combination of filters, Orientation and Rota-
tional Velocity

5 Results
The filters on both modalities were successful, maintaining residuals within
acceptable tolerances during critical parts of the simulation. Namely, the
oscillator was able to keep position residual within 2% of the amplitude, and
the rocket was able to maintain position residual within 5% during ascent.

17

Figure 7: Dropout Rates and Scale of the Residual for The Linear Kalman
tested on the oscillator

For the harmonic oscillator, average residual was plotted against the
dropout rate. Dropout rate references the chance that a sensor measure-
ment will be lost and subsequently neglected at a specific time step. For
example, a drop out rate of 50% means that at each time step, there is a
50% chance that a correction will not occur, resulting in only a prediction for
that time step. This is crucial in ensuring that the filter will remain robust
even when sensors poll at less frequent rates.

6 Future Work
The filter applicability could be improved by transitioning from Python to a
compiled language like C++ or Rust, accelerating performance and enabling
implementation on embedded hardware for real-time, in situ localization. Ad-
ditionally, integration efforts with new sensors and vehicles could be reduced
by automatically approximating covariances at run time.

18

7 Conclusion
In this work we have implemented a modular Kalman filter, allowing for
flexible construction of platforms with multiple, arbitrary sensors.

We have shown the filter’s effectiveness on synthetic data which mimics
the vehicles on which we aim to deploy this filter.

This work will enable us, as students on design teams, to more effectively
localize our vehicles and apply corrective controls. With future work enabling
us to run and tune this filter on hardware, this work clearly paves the way
for tangible innovations in student design teams.

8 Code Availability
The code used for this project can be found at the following github repository:

https://github.com/Willmac16/fused-kalman-localization

9 Acknowledgements
We want to thank Dr. Daniela Calvetti for teaching the Bayesian Scientific
Computing class, whose book[2] and work was instrumental in our ability to
carry out this project.

References
[1] S Bitzer. The UKF exposed: How it works, when it works and when it’s

better to sample. Tech. rep. Zenodo, 2016. doi: 10.5281/zenodo.44386.

[2] Daniela Calvetti and Erkki Somersalo. Bayesian Scientific Computing.
1st ed. Applied Mathematical Sciences. Springer Cham, 2023, pp. XVII,
286. isbn: 978-3-031-23824-6. doi: 10.1007/978-3-031-23824-6.

[3] KalmanFilter.net. Kalman Filter. Accessed: [December 1st, 2023]. 2023.
url: https://www.kalmanfilter.net/default.aspx.

[4] James Maley. A Modular Approach to Kalman Filter Design and Analy-
sis. Technical Report. Pagination: 60 pages. DEVCOM Army Research
Laboratory, Mar. 2021.

19

https://doi.org/10.5281/zenodo.44386
https://doi.org/10.1007/978-3-031-23824-6
https://www.kalmanfilter.net/default.aspx

[5] F. Landis Markley. “Attitude Estimation or Quaternion Estimation?” In:
Flight Mechanics Symposium 2003. NASA/CP-2003-212245. Greenbelt,
MD, USA: National Aeronautics and Space Administration, 2003, N/A.

[6] Eric A. Wan and Rudolph van der Merwe. The Unscented Kalman Fil-
ter for Nonlinear Estimation. Tech. rep. Oregon Graduate Institute of
Science & Technology.

20

	Introduction and Background
	Mathematical Modeling and Equations
	Linear Kalman Filter Update
	Linear Prediction
	Linear Correction

	Extended Kalman Filter Update
	Extended Prediction
	Extended Correction

	Unscented Kalman Filter Update
	Unscented Transform
	Unscented Prediction
	Unscented Correction

	Implementation
	Applications
	Spring Mass System
	Linear State Estimation with Sensor Dropout
	State and Parameter Estimation with the Unscented Kalman Filter

	Simplified Rocket Flight
	Generating Data, Physics Simulation
	Filter State Vector
	Filter Evolution Model
	Filter Sensor Overview
	GPS
	Barometer
	Accelerometer
	Gyroscope
	Magnetometer

	Results
	Future Work
	Conclusion
	Code Availability
	Acknowledgements

