
Implementation of a Modular Linear and Unscented Kalman Filter
Will MacCormack 1 Benjamin Rubinstein 1

1Case Western Reserve University Department of Aerospace Engineering

Abstract
• We present an implementation of a modular Kalman filter,

utilizing both linear and Unscented Kalman filtering
elements, optimized for robust localization in aerospace and
robotics applications.

• The architecture utilizes modular predictor and corrector
components, with flexibility for system-specific evolution
and observation functions, ensuring adaptability.

• Two synthetic modalities were tested and residual values
were found to be within acceptable ranges

• Proposed enhancements include transitioning from Python
to a compiled language and treating select parameters as
time-independent Gaussian random variables.

Introduction
• State estimation is a critical part of many control algorithms

for applications in robotics, aerospace engineering, and
mechanical systems.

• The simplicity and Gaussian nature of Newtonian systems has
led to a proliferation of Kalman Filters, which exploit the fact
that a Gaussian distribution is fully described by its mean and
covariance.

• The Linear Kalman Filter directly propagates mean and
covariance through a linear evolution model and computes a
posteriori estimates and covariance by solving the linear
inverse problem. This reliance on a linear evolution and sensor
model greatly reduces the set of applicable systems.

• The Extended Kalman filter uses the Jacobian of the system
to linearize the evolution and sensor models.

• The UKF models the probability distribution using an
ensemble of ‘sigma points’ which are used for both predictive
and corrective steps.

• All Bayesian filters rely upon evolutionary and observational
models to propagate state estimates and incorporate
observations, respectively. The simplified evolution and
observation models will be discussed in applications and on
the specific equation derivations.

Figure 1. Residuals for different rates of sensor dropout

Mathematical Model and
Update Equations

Variables
x is the state, b is the observation, D is the covariance. K is the
Kalman Gain Matrix. Γ and Σ are the process and measurement
noise estimates.
Linear Kalman Filter Update
Linear Predictor: ˆ̄x = F x̄ , D̂ = FDF T + Γ
Linear Corrector: ∆ = b − Ax , K = DAT (ADAT + Σ)−1

Linear Update: x̄ ′ = x̄ + K∆, D′ = (I − KA)D
Unscented Kalman Filter Update
Sigma Points and Weights:
x (0) = x̄ x (i) = x̄ + (α

√
κD)i ∀i = 1, . . . , n

x (j) = x̄ − (α
√

κD)j−n ∀j = n + 1, . . . , 2n
w (0)

m = α2κ−n
α2κ

, w (0)
c = w (0)

m − α2 + β

w (i)
m = w (i)

c = 1
2α2κ

∀i = 1, . . . , 2n
Unscented Prediction: x̂(i) = f (x (i), ∆t), ˆ̄x = ∑2n

i=0 w (i)
m x̂ (i), D̂ =∑2n

i=0 w (i)
c (x (i) − ˆ̄x)(x (i) − ˆ̄x)T + Γ

Correction: z (i) = h(x (i)), ẑ = ∑2n
i=0 w (i)

m z (i)

Measurement Predicted Covariance:S = ∑2n
i=0 w (i)

c (z (i) − ẑ)(z (i) −
ẑ)T + Σ
Cross Covariance: T = ∑2n

i=0 w (i)
c (x (i) − x̂)(z (i) − ẑ)T

Kalman Gain: K = TS−1

Update: x̄ = ˆ̄x + K (b − ẑ), D = D̂ − KSK T

Implementation Strategy
• Our modular Kalman filter implementation separates filtering

into predictors and correctors. Predictors evolve the state
estimate through time, while correctors handle a single,
atomic observation type.

• Inheritance and Polymorphism were used to implement
inter-operable Linear, Extended, and Unscented Kalman Filter
update steps with few lines of code. These classes only
provided mean and covariance update functions, abstracting
evolution and observation models to user-specific
implementation.

• A single predictor evolves the system each timestep, and each
independent sensor update has its own corrector to handle
different update rates between sensors and enable model
function despite data delays or dropouts.

Results
• We present state vs. time and residual vs. time graphs for the

two tested modalities.
• The model was first tested on a spring-mass oscillator. The

filter tracked one degree of position, velocity, and acceleration
without knowledge of the underlying spring-mass system.

• Second, the filter was applied to a modeled rocket flight,
where the state included three axis position, velocity,
acceleration, and rotational velocity along with a
quaternion-based orientation.

• Dropout rates of 10% through 99% were tested on the
spring-mass system, and model predictive quality remained
mostly unaffected up to sensor dropout of 80%.

• Residuals for position and orientation of the rocket were
found to be within acceptable ranges (<15%) during ascent,
proving on simulated data that the model could correct
without knowledge of the rocket’s mass or thrust.

Figure 2. Linear Kalman Filter, Dropout 50%

Figure 3. Rocket Filter Application

Future Work
• The filter applicability could be improved by transitioning

from Python to a compiled language like C++ or Rust,
accelerating performance and enabling implementation on
embedded hardware for real-time, in situ localization.

• Integration efforts could be reduced by automatically
approximating covariances.

Conclusions
• Through this work, we have shown the effectiveness of a

modular Kalman filter for sensor fusion localization and state
estimation.

• By creating an abstract base system and adding functionality
for each specific filter and system, the flexibility enables the
same code to be used for a variety of projects.

• Future work will involve compiling the code for embedded
deployments and applying the model real data.

References

[1] James Maley. A modular approach to kalman filter design and
analysis. Technical report, DEVCOM Army Research
Laboratory, March 2021. Pagination: 60 pages.

[2] F. Landis Markley. Attitude estimation or quaternion
estimation? In Flight Mechanics Symposium 2003, page N/A,
Greenbelt, MD, USA, 2003. National Aeronautics and Space
Administration. NASA/CP-2003-212245.

[3] Eric A. Wan and Rudolph van der Merwe. The unscented
kalman filter for nonlinear estimation. Technical report,
Oregon Graduate Institute of Science & Technology, 2000.


